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ABSTRACT
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The first and highly efficient total synthesis of (—)-brevisin has been achieved. The title compound was synthesized in only 29 steps (longest linear
sequence) from commercially available starting materials. The synthesis provided over 70 mg of a marine polycyclic ether compound.

The polycyclic ether (—)-brevisin' (1, Figure 1) was
isolated from the red tide dinoflagellate Karenia brevis,
which produces a variety of polycyclic ethers such as the
brevetoxins,” brevenal,® and the monocyclic ether amide
brevisamide.* Brevisin’s unique structure consists of two
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fused tricyclic ether ring assemblies bridged by a methylene
carbon and a conjugated aldehyde side chain, which is
similar to the side chain in brevenal and bevisamide.
Interestingly, despite 1 having a unique structure, which is
divided into two tricyclic ether units by the methylene, 1
inhibits the binding of tritiated 42-dihydrobrevetoxin B
(PbTx-3) to the voltage sensitive sodium channels.'* How-
ever, as with the other marine polycyclic ethers, the
biological activities of 1 have not been fully investigated
due to the extremely small supply from natural sources.
In order to elucidate its interaction with a target protein
and test other biological activities, such as mouse
lethality and cytotoxicity, the chemical synthesis for
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Figure 1. Structures of brevisin (1), brevenal, and brevisamide.

supplying materials was essential. Here we report
the first and highly efficient total synthesis of 1 using
Suzuki—Miyaura cross coupling and an aldol addition
as the key steps.

Scheme 1. Synthetic Plan of 1

Our synthetic strategy to 1 is summarized in Scheme 1.
The side chain fragment 2**> and iodide fragment 3 would
be connected by means of Suzuki—Miyaura cross cou-
pling. The polycyclic ether core would be synthesized from
the ABC-ring methyl ketone 4 and the EF-ring aldehyde 5
by an aldol addition and subsequent construction of the
D-ring. Tricyclic ether 4 would be synthesized from the
A-ring exocyclic enol ether 6° and the C-ring ketene acetal
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phosphate 7 by our Suzuki—Miyaura cross-coupling-
based strategy.’

Scheme 2. Synthesis of the ABC Ring Fragment
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The A-ring fragment 6 was connected by Suzuki—
Miyaura cross coupling to the C-ring ketene acetal phos-
phate 7, which was prepared in eight steps'®* from com-
mercially available 2-deoxy-p-ribose. Namely hydroboration
of 6 with 9-BBN generated a corresponding alkylborane,
which was reacted in situ with 7 in the presence of aqueous
Cs,COj5 and a catalytic amount of PdCl,(dppf) giving rise
to a cross-coupled product 8 in 86% yield. Successive
hydroboration/oxidation of 8 with BH3-SMe, followed
by regioselective DIBALH reduction’ gave diol 9. The
primary alcohol of diol 9 was selectively protected with a
TIPS group, and then the secondary alcohol was oxidized
to the ketone 10 using TPAP—NMO.'* Treatment of 10
with Zn(OTY), in the presence of EtSH accomplished the
deprotection of the TES groups and mixed thioacetal
formation, and subsequent benzylation of the hydroxy
group at C-10 afforded mixed thioacetal 11. Mixed thioa-
cetal 11 was oxidized to the corresponding sulfone, which
was treated with AIMes in a one-pot manner'' to introduce
the C-15 methyl group. Then, subsequent deprotection of
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the TIPS group gave the alcohol 12. Triflation of 12 intramolecular allylation'® to give the oxepane 20. The

followed by cyanidation with NaCN led to the correspond- relative configuration of 20 was confirmed by observed
ing nitrile, which was treated with MeLi to afford the NOE correlations between H-24/H-29, H-29/H-31, and
methyl ketone 4 in 68% yield from 12 (Scheme 2). H3-39/H-32 and by the large proton coupling constant

(8.8 Hz) between H-31 and H-32. The regioselective DI-
_ BALH reduction of 20 led to diol 21. The primary alcohol
of diol 21 was selectively tosylated, and then the secondary
alcohol was protected by a TES group to afford tosylate 22.
The tosylate 22 was reduced by LiAlIH,4 to afford the

Scheme 3. Synthesis of the EF Ring Fragment
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The connection of 4 and 5 by aldol addition and

The synthesis of the EF-ring fragment 5 started from the construction of the polycyclic ether core were accom-
known hydroxy epoxide 13."> A one-pot oxidation/Wittig plished as shown in Scheme 4. Treatment of the lithium
reaction'? of 13 followed by the deprotection of the TBS enolate derived from 4 with aldehyde 5 furnished a
group led to a.B-unsaturated ester 14. Treatment of 14 with separable 2.8:1 mixture of C-23 diastereomers 24a'®
a catalytic amount of PPTS induced 6-endo cyclization' and 24b."7 Treatment of 24a with Et;SiH in the pre-
to afford the pyran 15, and subsequent hydrogenation of sence of TMSOTf'® led to deprotection of TES ether
15 led to ester 16. Methyl acetal formation of 16 with with concomitant stereoselective reduction to cyclized
y-methoxyallylstannane 17'* provided mixed methyl acetal product 25 in 98% yield. The unprecedented polycyclic
18 as a mixture of the diastereomers. This mixture ether core of 1 could be constructed in only two steps

was treated with HMDS and TMSI to afford allylstannane from the key fragments 4 and 5. Removal f)f all benzyl
19. Reduction of the ester to the corresponding aldehyde groups of 25 followed by reprotection with the TES

by DIBALH and treatment with BF5-OEt, accomplished group afforded pentakis TES ether 26. At this stage, in
order to convert 26 to iodide 3, only primary TES ether
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Scheme 5. Treatment of Tris-TES Ethers with DIBALH
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n=0:27 n=0:29 98%
n=1:28 n=1:30 96%

had to be selectively removed in the presence of four
secondary TES ethers.

Recently we reported the highly selective deprotection of
mono- and bis-silyl ethers by DIBALH.'® This method was
also applicable to the selective deprotection of a primary
TES ether in the presence of two secondary TES ethers.
Tris-TES ethers 27 and 28 were converted to the corre-
sponding primary alcohols 29 and 30 in excellent yields
(Scheme 9).

Scheme 6. Completion of the Total Synthesis
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The completion of the total synthesis of 1 is illustrated in
Scheme 6. Application of the above selective deprotection
on pentakis-TES ether 26 gave primary alcohol 31 in 8§%
yield. Perhaps the neighboring ether oxygen atom of the A

Org. Lett,, Vol. 13, No. 4, 2011

Scheme 7. Selective Deprotection of 26

OTES Me O« OTES
Me_~1 O« A | B % Mo A O
Al B % — s).‘ — Al|B é
TESO 2 (0] B '.-)_ ) 4'1253 HO' a (0] i
26 B8’ H 31

ring accelerated the deprotection and generated its high
selectivity (Scheme 7). The primary alcohol 31 was con-
verted to iodide 3 with I,, PPhs, and imidazole. Finally,
connection of the fragments 2 and 3 by means of a
Suzuki—Miyaura cross coupling®® followed by the depro-
tection of all silyl groups and chemoselective oxidation of
the allylic alcohol at C-1 gave rise to 1in 75% yield for the
three steps. The optical rotation and the other spectroscopic
data of synthetic 1 were identical with those of natural 1.

In conclusion, we have accomplished the first total synth-
esis of (—)-brevisin (1). The polycyclic ether core was con-
structed by means of a Suzuki—Miyaura cross coupling
reaction and aldol addition as the key steps. It is note-
worthy that the synthesis was accomplished in only 29
longest linear steps from commercially available 2-deoxy-
D-ribose. Furthermore, based on our highly efficient syn-
thetic strategy, we could synthesize over 70 mg of 1. The
present synthesis is a successful example of practically
supplying a marine polycyclic ether compound and will
be important for the elucidation of brevisin’s biological
activity.
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